102: How to do a Data Science Project

Help Yourself - Sign Up

Video (1080p .mp4) | Video (720p .mp4) | Audio (.m4a)

Length: 16:00

In this video we will talk about the problems encountered in data science. We'll also discover how it fits into a process, which you can used as a plan. Finally, we'll look at the impacts of a Data Science project which will help you avoid any common pitfalls.

Problems in Data Science

  • Understanding the problem

  • “the five-whys”

  • Different questions dramatically effect the tools and techniques used to solve the problem.

Data Science as a Process

  • More Science than Engineering

Research Problem Model

  • High risk
  • High reward
  • Difficult
  • Unpredictable

CRISP-DM Process

By Kenneth Jensen CC BY-SA 3.0, via Wikimedia Commons

Impacts of Data Science

  • What is the purpose of the project? Who is affected?

  • Which parts of the business are affected? Do we need help?

  • You must think about the human concerns.

  • You need buy-in from the business; the business will be affected.


Business goals: make money, save money or save time. Data Science generates profit.

Project justifications - you now know how they are judged:

  • Alignment with Business Goals
  • A well defined, testable requirement
  • A robust plan
    • Data Understanding
    • Data Preparation
    • Modelling
    • Evaluation
    • Deployment
    • Iteration of the above
  • Buy-in and integration with other parts of the business

However, there are more philanthropic, scientific reasons for undertaking a project too. So these arguments may not directly apply to charitable causes or academia.

Winder Research logo



Registered Address

Winder Research and Development Ltd.,

Adm Accountants Ltd, Windsor House,

Cornwall Road,


North Yorkshire,

HG1 2PW,


Registration Number


VAT Number

© Winder Research and Development Ltd. 2016-2018; all rights reserved.